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Noise-induced sensitivity to the initial conditions in stochastic dynamical systems
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It is shown that the occurrence of a positive time-averaged Lyapunov exponent in a nonlinear system
subject to noise, be it additive or multiplicative, does not necessarily imply deterministic chaos.
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In Ref. [1], it is pointed out that the initial separation
of trajectories in dynamical systems linearized around a
stable fixed point and subjected to certain types of addi-
tive noise is described by a power law rather than the ex-
ponential separation observed in deterministic chaos. In
this sense, the outcome in such a noisy system is more
predictable than that of a deterministic chaotic system. It
is also pointed out that a system with multiplicative noise
can be characterized by a positive Lyapunov exponent
even when the underlying deterministic dynamics does
not exhibit chaos. In this Brief Report we want to point
out that such a situation can also arise in a system with
purely additive noise, provided that the full nonlinearity
of the dynamics is taken into account. The observation
of a positive time-averaged Lyapunov exponent in a non-
linear system subject to noise, be it additive or multiplica-
tive, does therefore not imply deterministic chaos.

To illustrate this point we consider the following mod-
el:
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where £ is a Gaussian white noise of intensity D, and
U (x) is a potential function. The invariant density P5(x)
for the stochastic process x that obeys the stochastic
differential Eq. (1) is given by (assuming ergodicity)

U(x)
D

P (x)~exp (2)

Consider now the separation Ax(7)=x,—x,; of two tra-
jectories starting close to the initial point x (but subject to
two independent realizations of the Gaussian white-noise
process &). For small times 7, Ax(7) corresponds to an
Ornstein-Uhlenbeck process obeying the following sto-
chastic differential equation:
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The quantity of interest is the evolution of the absolute
value of the separation |Ax(7)|, starting from the initial
separation |Ax(0)|=e. From Eq. (3), we get the follow-
ing result:
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The error function of x is represented by erf(x). The re-
sult Eq. (4) only holds for times 7 and initial separations €
small enough such that the linearized stochastic dynam-
ics given by Eq. (3) is valid. Restricting ourselves to this
situation, we note that two different regimes can be dis-
tinguished in the behavior of |Ax(7)| depending on the
value of p. For p<<1 the separation of trajectories is
dominated by the noise and is equal to that of two in-
dependent Brownian trajectories. One thus recovers the
power law mentioned in [1],

(|Ax(7)|)=V8Dr/mw . (5)

This result corresponds to a subexponential separation of
the trajectories, and the corresponding value of the
Lyapunov exponent is equal to zero. Note that the con-
dition p <<1 is compatible with the usual definition of a
Lyapunov coefficient in which the limit €—0 has to be
taken prior to the limit 7—0. It is however conceivable
that one does not possess the required accuracy on x to
reach this regime, and the consideration of the other re-
gime becomes relevant. In this case, p >>1, the drift term
dominates in Eq. (3), and Eq. (4) predicts that trajectories
converge or diverge exponentially, depending on the
value of the local curvature of the potential,

(|Ax(7)|)=€eexp[—U"(x)r] . (6)

The local Lyapunov exponent, characterizing this ex-
ponential separation, is given by A(x)=—U"(x). As-
suming ergodicity, we conclude that the time-averaged
Lyapunov exponent reads

A= [dx Mx)PH(x)=— [dx U"(x)P*(x), )
where the integrals run over the support of the steady-

state probability P*(x) (which is typically from — o to
+ ). Regions of the potential with a negative curvature
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give a positive contribution to the overall value of the
Lyapunov exponent A. It is quite possible that such re-
gions dominate even when the potential U(x) has a
unique globally stable minimum.

A simple example of a potential that illustrates the
above possibilities is schematically represented in Fig. 1.
An analytical study of this model, taking into account the
effect of all the small parameters involved, would clearly
be desirable, but it is very involved. We rather give a
qualitative discussion of how, in this example, the value
and sign of the Lyapunov exponent will change with the
intensity of the noise. We assume that we are using € and
7 values such that the linearized equation (3) is valid and
that p>>1. These conditions can always be fulfilled by
choosing € and 7 sufficiently small and the ratio €/7 large
enough. For a small value of the noise intensity D, the
probability density P(x) will be concentrated in a small
region around x =0 where U"'(x)>0. We will thus ob-
serve an exponential convergence of the trajectories with
a negative value of the Lyapunov exponent A; cf. Eq. (7).
As the noise intensity D increases, while the value of p is
still much larger than 1, the region further away from
x =0, where U"'(x) <0, will get more weight and eventu-
ally dominate in the integral given in Eq. (7). A positive
value of the Lyapunov coefficient A results. For even
larger values of D, the value of p will further decrease
and we will leave the region where an exponential separa-
tion between trajectories is observed. Eventually for
p <<1 we will observe the subexponential separation, cf.

U(x)

FIG. 1. Schematic representation of a potential U(x) for
which the Lyapunov exponent A defined in Eq. (7) will change
with the amplitude of the noise.

Eq. (5), with the corresponding value of the Lyapunov ex-
ponent equal to zero.

The above example illustrates that the value or even
the sign of the effective Lyapunov exponent A, obtained
in nonlinear systems with noise, may not reflect the prop-
erties of the underlying deterministic attractor.
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